Notes: 8.3 Products \& Quotients of Complex Numbers in Polar Form

Product of Complex Numbers

 in Polar Form$r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right) \cdot r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)$

$$
=\frac{r_{\text {modulus }}^{r_{1} r_{2}}}{\underset{\text { argument }}{\uparrow}}\left[\cos \left(\frac{\theta_{1}+\theta_{2}}{\uparrow}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right]
$$

Quotient of Complex Numbers

 in Polar Form$\frac{r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right)}{r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)}=$
$=\frac{r_{1}}{r_{2}}\left[\underset{\text { modulus }}{\substack{\text { argument }}}\left[\cos \left(\theta_{1}-\theta_{2}\right)+i \sin \left(\theta_{1}-\theta_{2}\right)\right]\right.$

Powers and Roots of Complex Numbers

De Moivre's Theorem

$$
r\left(\underset{\text { POLAR FORM }}{\cos \theta+i \sin \theta)]^{n}=r^{n}(\cos n \theta+i \sin n \theta)}\right.
$$ Be careful with order of operations. $\&$ sine. Multiply $\mathrm{n} \bullet \theta$ first, then apply cosine \&

if $\mathrm{n}=$ integer, then you are finding a power
if $\mathrm{n}=$ fraction, then you are finding a root

Example: find the product
A. $5(\cos \pi+i \sin \pi) \cdot 2\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right)$ $\bmod : 5(2)=10(\operatorname{modu} \operatorname{lus})$
$\arg : \frac{4 \pi}{4}+\frac{3 \pi}{4}=\frac{7 \pi}{4}$ (argument)

Your homework may ask you to stop here at polar form of a complex \#

$$
=5 \sqrt{2}-5 \sqrt{2} i
$$

Rectangular form of a complex \#

Example: find the quotient
B. $\frac{5(\cos \pi+i \sin \pi)}{2\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right)}$
$\bmod : \frac{5}{2}$ $\arg : \frac{4 \pi}{4}-\frac{3 \pi}{4}=\frac{\pi}{4}$
$=\frac{5}{2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)$

$$
\begin{aligned}
& =\frac{5}{2}\left(\frac{\sqrt{2}}{2}+i \frac{\sqrt{2}}{2}\right) \\
& =\frac{5 \sqrt{2}}{4}+\frac{5 \sqrt{2}}{4} \text { i Rectangular } \\
& \text { form a complex }
\end{aligned}
$$

REMINDER:

Evaluate $(\sqrt{3}-i)^{2} \rightarrow \operatorname{multiply}(\sqrt{3}-i)(\sqrt{3}-i)$
then simplify using $\mathrm{i}^{2}=-1$

$$
\begin{aligned}
(\sqrt{3}-i)(\sqrt{3}-i) & =3-2 i \sqrt{3}+i^{2} \\
& =3-2 i \sqrt{3}+-1 \\
& =2-2 i \sqrt{3}
\end{aligned}
$$

This is a reasonable calculation to do "by hand."

Finding an expression to the $2^{\text {nd }}$ power is somewhat reasonable by expansion...but what about $(\sqrt{3}-i)^{7}$ or $(\sqrt{3}-i)^{\frac{1}{3}} ? ? ?$

TOO HARD to calculate by hand!!!
Pascal's Triangle or Binomial
Theorem could help us, but there would be many steps to simplify.

Use DeMoivre's Theorem instead.

Example: $\quad(3, \sqrt{3})$
$[r(\cos \theta+\sin \theta)]^{7}=\left(\operatorname{man}^{(\cos \theta \theta+\sin \theta \theta)}\right.$
C. $\begin{gathered}a+b i \\ (3+\sqrt{3} i)^{5}\end{gathered}$

$$
\begin{array}{ll}
\text { C. }(3+\sqrt{3} i)^{2} & \\
r=\sqrt{a^{2}+b^{2}} & \tan \theta=\frac{b}{a} \\
r=\sqrt{3^{2}+(\sqrt{3})^{2}} & \tan \theta=\frac{\sqrt{3}}{3} \\
r=\sqrt{a+3} & \\
r=\sqrt{12} \sqrt{4} \cdot \sqrt{3} & \theta=\frac{\pi}{6} \\
r=2 \sqrt{3} &
\end{array}
$$

Quad I

Now simplify to get rectangular form.

See next slide...

Example: $\quad(3, \sqrt{3}) \quad[r(\cos \theta+i \sin \theta)]^{n}=\left[r^{n}(\cos n \theta+i \sin n \theta)\right.$
C. $(3+\sqrt{3} i)^{5}$ Quad I 5

Now simplify to get rectangular form \rightarrow

$$
\begin{aligned}
& 2 \sqrt{3}\left(\cos \frac{\sqrt{3}}{6}+i \sin \frac{\pi}{6}\right)^{5} \\
= & (2 \sqrt{3})^{5}\left(\cos \frac{5 \pi}{6}+i \sin \frac{5 \pi}{6}\right) \\
= & 2^{5} \sqrt{3}\left(-\frac{\sqrt{3}}{2}+\frac{1}{2} i\right) \\
= & 32 \cdot 3 \cdot 3 \cdot \sqrt{3}\left(-\frac{\sqrt{3}}{2}+\frac{1}{2} i\right) \\
= & 288 \sqrt{3}\left(-\frac{\sqrt{3}}{2}+\frac{1}{2} i\right) \\
= & -432+144 \sqrt{3} i
\end{aligned}
$$

CHECK 8.3 EVEN ANSWERS:

78. $2\left(\cos \frac{\pi}{18}+i \sin \frac{\pi}{18}\right)$

Do NOT graph \#78, 82, 84

82. $2^{\frac{1}{6}}\left(\cos \frac{\pi}{12}+i \sin \frac{\pi}{12}\right)$

Leave answer in polar form since not easily
84. $\left(\cos \frac{\pi}{10}+i \sin \frac{\pi}{10}\right)$
8.3 HINTS:
(78)

$$
\begin{aligned}
& \text { (4NTS: } \begin{aligned}
&\left(4 \sqrt{3}+4_{1}\right)^{\frac{1}{3}}=r=r(\cos \theta+1 \sin \theta)^{\frac{1}{3}} \\
& r=\sqrt{\frac{1}{3}}\left(\cos \frac{1}{3} \theta+1 \sin \frac{1}{3} \theta\right)
\end{aligned}
\end{aligned}
$$

$$
\tan \theta=
$$

$$
\begin{aligned}
& (84) i^{\frac{1}{5}} \rightarrow\left(0+\frac{1}{b} l\right)^{\frac{1}{5}} \\
& r=\sqrt{ } \\
& \tan \theta=
\end{aligned}
$$

